Friday 11 October 2024

Materials and Tools

11 October 2024

Try as one might, if the former has to be precise, you can try to cut it carefully in one go but do not expect it to be perfect. Sanding down to an outline is an additional step and it will take quite a lot of time because one has to keep checking and make adjustment while sanding. 

How do you sand? Do you grip the former in one hand and use a sanding block or file in the other hand? Most would and I would, however it will still not be as precise then if you are able to guide the piece squarely across the sandpaper (not the tool across the work piece).

Grip the work piece against a square block, the forefinger is at the side of the work piece and the middle finger on the other side of the block. Rest the forefinger on the work piece to provide some stability and downward pressure. Slide the workpiece and block thus held, over sand paper and you can be assured of straight ninety degrees edges. Most importantly, you should grip it so that you can see the drawn outline on the work piece while sanding. 

8 November 2023

  • 1mm: 1mm EPS: 20gsm
  • 1mm: 1mm XPS: 30gsm
  • 1mm: 1mm Depron: 40gsm
  • 0.09mm: 1 pc Paper: 70gsm (A4 is 5g per piece)
  • 1mm: 1mm Balsa: 160gsm (10lb/ft3, medium density)

Paper is 11 times thinner than any other 1mm material. Tissue is thinner. Weight of 1mm balsa is equivalent to 8mm EPS, 2.3mm XPS, 1.75mm Depron. 8mm EPS ought to be stronger than 1mm balsa. XPS (Extruded Polystryrene or Styrofoam) has its Compressive strength of 250 kPa, Tensile strength of 450 kPa and Shear strength of 250 kPa. Since I am taking 20gsm for 1mm EPS, while general EPS has compressive strength of between 40 and 72 kPa, the particular 1mm EPS ought to have compressive strength of 20/30*250kPa = 166 kPa.

Gms/m2:
Monokote 75
Doculam 42
Litespan 28
Cellophane 24
Reynolds 14


XPS (Extruded Polystyrene or Styrofoam) has its Compressive strength of 250 kPa, Tensile strength of 450 kPa and Shear strength of 250 kPa.


 Candidates for modelling use.

Covering:

  • A4 paper, printer
  • Store bought coloured paper and tissue
Structural:
  • Expanded or extruded foam (EPS, XPS comes in various density)
  • A4 paper, cardboard
  • Incense sticks, disposable chopsticks, ice-cream sticks
  • Stapler, paper clips
  • glue, CA, tape, double sided tape
  • Disposable plastic cups
  • CF rods, bamboo
  • thread
Tools:
  • Pencil, pens, markers, paint, brushes, tape, masking tape, double side tapes
  • Tracing paper, saranwrap, rubber bands
  • NT cutter
  • Files, sanding blocks, sandpaper, plane
  • HWC
  • Ruler, compass, divider
  • Pins, thumbtacks
  • foam board, corrugated cardboard, wood
  • Soldering iron and solder
  • Cutting mat

Structure
Tension, Compression, Torsion
Triangle frame has torsion resistant.
Rectangle frame has no torsion resistant.
Thick end frame gives a bit of torsion strength, so does making similar triangular gussets.
Catastrophic failures are:
Wing fold, at dihedral joint and outwards. Wing twist. Wing break due to impact.
Fuselage folds. Fuselage cracks.
EPS, XPS, depron, compressed foam. XPS can be prepared in sheets and sanded


Unit weight (gsm) comparison of material
  • 1mm EPS: 20gsm
  • 1mm XPS: 30gsm
  • 1mm Depron: 40gsm
  • 1 pc Paper: 70gsm (A4 is 5g per piece)
  • 1mm Balsa: 160gsm (10lb/ft3, medium density)

Balsa

Use of 1/16" balsa wood: 

Small sections unless made of firm wood are fragile and does not have insufficient strength, maybe to use larger section, for example if it calls for a 1/8"x1/16" 9lb/ft3 density and I don't have that heavy a wood, increase the size to 3/16"x1/8", this will require some structure changes to the layout to accommodate the larger section.

Use of 1/32" balsa wood:

Even though it is convenient and easy to cut out the entire shape from sheet wood, bear in mind that a frame structure of 1/16" will be stronger and more resilient. This thickness is especially useful for making laminations for curve parts. As 0.8mm is very thin, go with 3 laminates of 1/32".

Windex

I read that windex and other glass cleaner makes the balsa more pliable then with plain water. I don't think I'd use saliva and I have also read that soaking the balsa strips in windex for a few hours is good.

Gussets

This could be from balsa sheet or even bond paper. 

Tweezers

I think a pair of tweezers is a useful tool for handling balsa. However, I also think that using tweezers made from metal might crush the balsa. I have read that crushed balsa may be recovered by dipping a bit of water on the affected wood. Maybe a better pair of tweezers may be made from bamboo chopsticks or a folded piece of plastic card?

Other tools

The biggest tool may be the building board. For my case, I think a piece of 1" blue foam is ok. 

A tool that may surpass the building board in size would be a frame for stretching tissue. I think there's no easy way to get the tool made, so I think I could just buy a frame from Art Friend. Might as well buy 2 at least, because there's bound to be more than 1 coloured tissue needed. I think I should also get a smaller frame for doping trimmings, A4 sized. To attach the tissue on a wet day, have the frame coated with dope and use thinner to attach the tissue. Any leftovers on the frame may be sanded off and re-doped.

Dope replacement, I think I'll just use thinner and EPS. It is not for doping the completed model, it is only for the attachment of tissue. For final protection, I think I'd just buy a rattlecan of clear lacquer.

Coloured trims will need to be firm enough to handle and crisp enough to cut neatly. I think a doped piece of coloured tissue is good and it can be attached with thinner. I will try this, it may be better than white glue or glue stick. I'll experiment with the dope replacement and the rattlecan. I think the rattle can is also thinner solvent.

Intricate photos may be printed, treated, cutout and applied in a similar manner. Hence the need for a small frame of A4 size.

Kitchen plastic wrap would protect the plan from CA and the underlying building board is also protected.

Pins will be needed, I think the regular tailors' pins are good enough. Other pins and thumb tacks are also useful. Locations requiring temporary anchors may be pinned, against the transferring load or to both sides of the transferring load. 

Right angle braces can be made from blue foam and pinned to the board to hold the sides together or to hold the former perpendicular. Is 10 degrees a good dihedral for free flight?

Glue applicator. I normally used excessive glue, I used offcuts of sticks but they lumped easily and seems not to be able to carry sufficient glue. I think I could use the eye of a largish needle to be a glue applicator. Maybe the eye should be cut/grounded as I have read? Or maybe I can just use a soft wire and make the eyelet, seems less 'dangerous'. A 'O' sized nylon brush should also work very well for water solvent glue, it might be ruined and have to be replaced frequently if using superglue.



Friday 6 September 2024

Rubber powered

6 September 2024

Winding stooge

The most direct and easiest way to wind up the propeller is to hold the model in one hand, normally the left hand for a right hander, and twirl the propeller with the other hand's forefinger. The correct way though is to stretch wind the rubber motor, and then hook on to the propeller. This manner requires a 2nd person to hold the model and then a rubber winder.

How do solo flyers do it? They have their rubber winder to create stretch and multiply winds and they have a winding stooge to hold the model. I have seen photographs that shows the motor peg to be aluminium tubing to allow the insertion of a small wire and I have also seen stick motors where the plastic propeller is held stationary and the wound rubber is attached to the rear motor hook. One modeller, and I think he must have been an experienced one, wrote all he needed is to place hooks in his shoe laces, which will then keep the plastic propeller stationary.  This method offers a simple and portable solution, as it doesn't require any additional equipment beyond the hooks and the model itself. It's a testament to the ingenuity and adaptability of modelers who often find creative ways to overcome challenges. Wear shoes, shoes with shoelaces.

16 August 2024

Hand cranked rubber winder

Use 2 crown gears (or spur gears), one will be the input and the second will be the output. Use 2 sleeves for the bearing and 2 short length of wire for the crank handle and output hook.

A wire will be passed through a sleeve inside the output gear and bent to hook onto the gear, drilling is required on the output gear to accept the anchor. The sleeve functions as an anchorpoint to the cover plates of the winder. The free end of the wire is then formed into a hook shape to accept the rubber band. 

The input gear is similarly treated, except that the free end of the wire is cranked so that the gear may be turned by hand.

Thursday 5 September 2024

Quad controlled nano plane

5 September 2024

I have not flown the ZY-320 (2 channel 2-motor plane of 210mm wingspan) but I toyed with it. After the model is initiated and is bounded to the transmitter, tilting one wing low causes a change in the spinning noise of the twin motors. This means it has a gyro to keep the wings level. The twin motors were 0714, driving 45mm pusher propellers and the cell is 150mah. The whole model is described as 25grammes. The cell is inserted from the rear, the motors are protected with skids in the motor mount and there are 2 very small wheels about 15mm diameter. ROG may be possible with this model.

If I were to use the airborne parts with minimum modifications and keeping the wheels and using the twin skids, I will need to make a beam mount for the twin motors, thus creating a sort of power pod and command centre. The easiest and laziest way to mount this pod is below the model. What are the effect of a low CG and low thrustline?

There will be inherent pendulum stability, doing away with dihedral at the model. The wheels and skids allow sliding landing on smooth ground. If model has no yaw stability, the pod can have fin or fins. The pod can have  horizontal stabiliser for pitching stability. The thrustline is below the centre of drag/lift, may need up thrust.

How about a parasail, an autogyro, a kite, a bird, a disc/square/oval or even a Doraemon?

23 August 2024

I just placed my order to AliExpress for a 2 channel 2-motor plane of 210mm wingspan. I think it'll fly indoors and it costs less than $20. Better to pay this then figuring out limitations and hacks to a CX-10.

I'll fly the model a few times to see if I like it.
If I do, I'll figure out how to get more 150mah batteries.
If I don't like it, it's $20.

If the model is all battered or I got bored flying it, I'll break out the parts and do my own model!
To convert a twin-counter-rotating-motor pusher plane to a twin-counter-rotating motor pulling plane, the motors will stay on the side they were, but remember to pull out and swap the propellers. 

The $20 model's board has some kind of stabilisation because the model does not have any dihedral. If it works out well, it can mean I am not restricted to modelling high wings. I am also not restricted to 2 engined planes, 3 or 4 engined would also work out well. And must it have propeller? Well, the <$20 model is supposedly a jet plane. 

I wonder what is the weight of the airborne pack. I have chosen the smaller model that flies with 150 mah cell. 

It is such a tiny model, but it is a SU or something so I would work out the entire model's horizontal area (fuselage, wing, tail) and not consider the 210mm wingspan. Just make the new model bigger for slower flight, bigger in terms of the aforesaid horizontal area.   

21 August 2024

Aliexpress still have Cheerson CX-10. CX-10 has the 1s mah battery inside the main body and exposes only the charging port. Extra batteries are available, with or without plugs and some are bundled with charger and charging adapter cables.

4 October 2016

This is the Eachine E010, only available as Mode 2.

I like the four bladed propellers in the protector rings and the rings are duct design with a good lip for better draw.

The vertical lift seems more powerful than the CX10A (and of course  more than the WD-TX which is heavier). It could be because of different motor speed control setting but perhaps not.

If I want, I can connect the ducted fans to WLToys receiver board and make an RC jet.: Boeing, Airbus or even the A-10? Many possibilities.

 

 

18 August 2016

Not a plane but I bought another CX10A and a CX-10WD-TX.
The latter is WiFi controlled, comes with a transmitter and it is a FPV drone that can take photos and videos. It also have height hold, one touch take off and one touch landing. I bought it from Rotor, listed price 69SGD.












7 June 2016

Ooh, a Blériot 115 or 155 is also possible and it seems they are easier to do than a HP42.

The 155 had the same 4 engine configuration but there's no 'inverted gull' kink to the lower wing and the engines were mounted clearly on top of the wings.

There's one door and it was at the nose!
The 155 was smooth skin, no corrugated steel sheets.
Easy radiators to do.

Both upper and lower wings were of equal span, so I don't have to measure the spans of the model.
It had interesting names, in this one, it was called 'Clement Ader'.
 Single tail, unlike the boxed tail of the HP42.
 This was the 115.
 It seems it had a front viewing windows for the passengers.


Don't know if the access for passengers were from the nose. But pity the pilots/navigator, sitting exposed.

Which motor should connect to which arm of the quad controller and which direction should that motor turn? This is what I came up with, but there's something wrong with it.



This configuration would work, but aileron input yaws the plane and rudder input rolls the plane. I haven't stumble on the correct configuration yet.

It's not just the inputs I am concerned about, it's how the quad controller will stabilise the model. When the quad controller detects a roll, translated, the low side speeds up when I'd rather have it speed up opposing motors that give a yaw, which is a roll...see? See? I can confuse easily by writing too much, no wonder I didn't get what I wanted.








So, here's the final configuration which I think is correct.

When I want to roll to the right, quad arms 1 and 3 gives more voltage, the opposing pair of motors at 1.30 and 7.30 speeds up and the torque rolls the model right.

When I want to yaw to the right, quad arms 2 and 3 (I have to verify this) gives more voltage to the motors at 1.30 and 4.30, which speeds up and yaws the model towards the right.

When I want to pitch up, quad arms 1 and 2 gives more voltage to motors at 4.30 and 7.30 and the model pitches up.






16 May 2016

This Eachine H8 mini was delivered last week. I bought it from Banggood because it is cheaper than the Cheerson CX10A, have bigger motors, propellers and the battery connection uses the white plugs.

I bought a Mode 1 type but the aileron and rudder are on the wrong sticks. It is actually a Mode 3 transmitter.

It flies ok, quieter than the CX10A, but it took conscious effort to adapt to Mode 3. So I could hover but not much more.

The propellers are bigger than CX10A's but smaller than the Hubsans which I had bought a few for experimentation. The motors spins free but that is probably because of the increased mass of the propellers?

The plastic frame is flexible and does not break. The guard rails looks ok but are not as useful as a cage because they are too small and do not form a protection ring.

28 April 2016

I am not sure if my visualising of movements is correct.

Question:
If the motors and propellers are forward facing but the board is mounted horizontally, the throttle, ailerons and elevator direction is the same, but what is the effect on the rudder, i.e. vertical axis?

There are two things to consider: the self-stabilising horizontal rotation about the vertical axis and the stick inputs.

Arguments:
When there is a deviation, for example, the quad board were to be displaced in a clockwise rotation (in a vertical axis, i.e. turning right), the two pairs of motors placed horizontally forward facing will react to compensate by rotating about the horizontal axis in an anticlockwise rotation (the model will bank right). This is contrary to the desired banking direction as what we want is for the model to bank left for left turn.
When the rudder stick is pushed to right, we want the model to bank right but the horizontally aligned motors will cause the board/model to bank left. This is also contrary to the desired banking direction because wheat we want is for the model to bank right for right turn.

Solution:
I think I can get the desired rudder stabilising and output by swapping the two pairs of motors, for example for the front-left motor, which translates to bottom-left, it shall be changed from clockwise rotation to one which has anticlockwise rotation.
Front view:
CA     to    AC
AC     to    CA


5 April 2016

Last night I decided to open up the CX10A. I didn't want to but I had to. It's either out with the soldering gun or out with the CX10A; there's no point keeping toys you can't play with. Forego the idea that one day it can be salvaged as parts for a new toy, life is too short.

First I pinched the 4 propellers out of the motor shafts. Then I took out the 4 screws and carefully plied open the latches which are molded to the white plastic bottom cover piece. Gingerly the top cover was removed and the PCB pried out.

Can't see really, but with the camera phone to the rescue, all becomes clear where the wire was disconnected. I tried to see if the solder will met the plastic sleeve, so I don't have to strip the wire: nope. I tried to strip the wire with a pair scissors and cut it instead. I tried again but was really gentle this time and managed to bare a fresh wire core. I tinned the bared wire, or at least I think I did. All this time I can't see what I was doing and it was by 'feel'. Whether the wire is tinned or not I do not know. All I know is that I tried. The soldering part was completed by 'feel' too. I tugged the wire and it seems to hold. The CX10A was re-assembled and it worked.  I then discovered there's this small square transparent plastic piece. I suppose that is to be inserted between the battery and the PCB. It worked for a couple of flights until I crashed it and the same motor stopped working.

I hadn't stored away my soldering gear yet, so I disassembled the CX10A, performed the soldering again (this time I didn't bare a new length or tinned the exposed end), assembled the CX10A and it is working. This time, it was much easier, experience equals familiarity? I didn't fit the small square transparent plastic piece, I wanted to but didn't find it (later on, I stored the plastic piece in the battery compartment of the transmitter.

I think that during a crash, the contact point broke off when that motor twisted. So I thought of hotgluing the motor to the bottom cover, knowing though, that that would mean that I will have some difficulties if I have to disassemble the CX10A again. I thought of superglue, UHU and then settled on a particular glue paste that came in a tube. This glue says it is all-purpose, it looks to be some form of paste compound which won't dissolve in water when dried. I remembered that the paste dried hard.
I applied a bit of it on the exposed sides of the motors after assembly. Then I decided to installed the cage (it has snapped in a few places, but should still be ok) and applied more glue to the bottom of the motors. Only time will tell, but I think this is a good move.

My CX10A flies only a bit longer than 3 minutes and the battery was hot to touch.

1 April 2016

It is the end! Banggood does not ship their lipos to Singapore, no matter how small!

I bought another CX10A and was having a good time until one motor stopped reacting. Perhaps it is a simple matter of opening up and re-soldering, but what shall I do if it is not. Meantime I bought another mini/nano Quad: Eachine H8 Mini Headless Mode 2.4G 4CH 6 Axis RC Quadcopter RTF, for $18.50. It looks to be larger and the lipo is 150mah with the white plug.

I also bought 10x of the male and female white plugs. They would come in useful one day.

30 September 2015

I printed this drawing on A3 for study. The Cheerson propeller fits inside the prop arc and the motor fits in the nacelles too.

A wing jig is required to have the wings assembled correctly because the top and bottom wings are polyhedral and the struts are numerous and requires careful alignment.

Prepare jig and slot in long strips of PVC to form the warren-truss for both front and back struts.
The struts between the top motors and the bottom motors to be made rigid. Glue CF rods to these four struts (front and back).
Prepare and finish the wings, checking dihedral breaks with jig.
Solder magnet wires to motors and glue motors onto wings.
Assemble and glue the jigged struts onto the lower wings and then the upper wings.
Remove jig and leave the glued in struts in placed. The jig would be destroyed in the process.
Cover motor with paper nacelles.
Glue on the diagonal struts.
Tidy up the motor wires. Solder motor wires to board.
Place and glue the biplane onto the finished fuselage.
Run the motor wires to the fuselage.
Cover fuselage and wing joints with paper.
Glue the board to nose.
Make hatch to access board. To switch on and to charge.
Glue the tail and landing gear to the fuselage.


The 4 arms (and SM LEDs) would protrude pass the fuselage's outline. The propeller fits in the propeller arc described.
Overview.


Comparison with 20" Kirby Cadet.
Perhaps 15" wingspan?





 

 

 

 

 

 

 

 

 

The motor would fit nicely in the nacelle's outline and the propeller is just about the right size. There seems to be no space for detailing the Bristol Jupiter engine.

 

 

 

 

 

28 September 2015

I took the Cheerson CX10A out yesterday and couldn't get it to bind. I charged the quad and the USB charging was lighted for a very long time. I picked it up and felt that the 1s cell is very hot.

I haven't been flying the Cheerson CX10A for a few months (maybe 6 months). I think the lipo was damaged by the deep discharge. I could buy a replacement cell from Banggood and replaced the damaged battery but I don't think it is worth my effort. I didn't enjoy flying it. I suppose the board and motors are ok from the last flight many months ago, so I thought how I could re-use and modify it to airplane use.









First to mind was a 4-propellers biplane. Preferably with 2 motors at the top pair of wings and 2 at the bottom. I scour the internet and found the Handley Page HP 42.

With this arrangement of 4 motors, I could place the board in a horizontal position. So long I make this model of HP 42 to be free flight capable, there should not be any reason that I can't control the flight direction when the board and motors are working. Infact, I would have auto-stabilisation which makes flying even easier.

When the model is banked, the 2 motors on the inside pair of wings would spin faster and the opposing twins slower. When diving, the 2 motors on the lower pair of wings would spin faster and the upper pair slower. This would keep the model in a level attitude and pushing the throttle up will have the model fly faster and higher.

The model could be built from simple foam and paper and I could extend the motors' leads by using magnetic wires instead since I have ordered some from Banggood.

The CX10A weighed 12.0gm. I suppose a Handley Page HP42 under 20gm is possible since there is no other airborne electronics to add.











I opened up my CX10A and noticed I don't have the antennae like in the CX10, maybe the antennae is printed on the board. As it works, I am not bothered.

Here's the top view. The charging socket is at the top and the switch is under the board.





A study of the connections of the batteries and motors. Positive: White, Red. Negative: Black, Blue






































































I like minimal intervention and work; I don't like wasting. So I thought of how I could make full use of the switch and charging socket. While it is a simple matter to solder battery connectors and use that as a switch and charging socket, just because I like to do minimal work, I think it might equally be easy if the battery and board are in one unit, like the way it came in, and provide recess instead to have access at the built-in switch and charging socket.

The placement of the board could simply be atop the upper wings of the HP 42 for easy access or I could do some other model with the board tucked in somewhere less conspicouous and even have the small LED shining bright. And this gave me this idea. A X-Wing Fighter.

Have the motors either in tractor or pusher mode.
Have the board glued underneath the fuselage.
Have thin transparent pvc foreplanes if necessary.

Maybe the foreplanes won't be necessary because of the mems gyro onboard.

Whatever it is, the most important thing for success is that the model must be able to glide.





































Monday 19 August 2024

Paragliders

19 August 2024

Folding a rectangular piece of Bienfang tracing paper and gluing the edges together can provide the necessary stiffness for a paraglider's sail. For ease of flight adjustment and to prevent the ends from collapsing and disrupting the balance, fold the tips of the sail over longer balsa sticks. Two sets of strings, tied to a pendant weight, will be looped over the ends of these sticks.

5 August 2024

An indoor model paraglider using Bienfang tracing paper as the sail but uses a truss structure made of balsa sticks to support the sail and the weight. Using threads/fishing lines or similarly flexible material may be more to realistic, but it is less forgiving for a simple-to-fly indoor model paraglider.

The truss structure consists of 2 identical triangles made of 1/16" square balsa sticks, joined at the apex where the weight is attached and spread apart by a cross brace (also of balsa sticks) in the middle of the adjacent sides and hypotenuse sides. A simple rectangular piece of Bienfang tracing paper, with the length slightly longer than the separated adjacent sides is glued to the adjacent sides and this completes the very small indoor model paraglider.

2 August 2024

paragliders: lightweight, free-flying, foot-launched glider aircraft with no rigid primary structure.

An indoor model paraglider using Bienfang tracing paper

The intention is to make a small glider without rigid primary structure and successfully glide it in an indoor environment. 

A real paraglider has no rigid primary structure, and yet it manages not to collapse upon itself because the sailcloth is stitched to form a ram-air structure. I don't want to even try and replicate it on a miniature model gliding indoors.

Let's replace the ram-air structure by changing the design and material. Firstly, make a single-skin sail from Bienfang tracing paper. To this single flat (and unstable) airfoil, we want to stiffen it chord-wise and we can do that by folding the tracing paper upon itself. Do it a few times and we will have as many integral paper ribs (without camber) as we wish. To these ribs, rig the underslung weight for balance and we are done.

An alternative method is to fold the single sail into an accordian stack and punch holes into it to allow rigging the underslung weight for balance.

Rigging the underslung weight

The weight is a piece of metal nut, washer or even a nylon foam wheel. The hole will allow the rigging lines to pass through, simplifying the tying of the weight.

For the moment, the rigging lines are designed to be identical and the most important aspect of each set of rigging line (fore and aft) is to hold the sail (relative to the weight) at the same pitch as the other sets. Making the rigging lines identical will be very time-consuming. A jig is therefore necessary and I am thinking of using paper stapler's staples to fabricate simple hooks.

 


Tuesday 13 August 2024

Plugs!

13 August 2024

Images from AliExpress, and this site 4gram 1S PRO-BRICK - Buzzard Models

Batteries

1S 2 Pins Molex 51005, 2.54mm spacing 



 


Connector1: JST 1.25MM Male Plug + Female Socket Connector Cable 15CM 28AWG Wires


Connector2: JST PH 2.0MM Male Plug + Female Socket Connector Cable 20CM 26AWG Wires


Connector3: JST XH 2.54MM Male Plug + Female Socket Connector Cable 20CM 26AWG Wires


Connector4: JST 2Pin Male Plug + Female Socket Cable Connector 20CM 22AWG Wires


Servos





Motors



Thursday 1 August 2024

Free time?

 

Make something: rubber powered models, small gliders

Play something: golf, indoor towing of small gliders?

Buy something: products for golf and rubber powered model

Achieve something: Success but at low cost and effort

Little gliders

I discovered some advantages of Bienfang tracing paper:

  • 30gsm
  • smooth both sides
  • no need to seal
  • ink doesn't spread
  • stiff and stable
  • has a noticeable grain direction, difficult to tear across grain.
I wonder if Bienfang will buckle when wet and shrink evenly afterwards.

Did a little flying wing, design adopted sweptback, cambered root and straightened tips, and short tip fins for stability (just the tracing paper, without balsa). Structure from 1/16" balsa.

IDEAS:
  • Curl Bienfang at the wing tips, then it is stronger in one direction
  • double/triple folds for strength instead? 

Thursday 25 July 2024

AliExpress

26 July 2024

Try not to buy and try to improvise?
Propeller can be made. Paperclip may not be strong, and a whole host of issues.
It may not be perfect but it will suffice; perfection is not my game.

25 July 2024

Haoye 6" propellers for rubber motor at AliExpress

Haoye's smallest is 6" and comes in 3 colours: Orange, Silver-Grey and Black. 

The hub has a free-wheel ramp and the shaft diameter is 1.5mm. (meaning anything like 1.2mm diameter shaft would be great?) Weight of the propeller is around 2.5grams. Costs: 10 pcs is SGD 3.08, shipping at SGD 2.70.

I think it is a great buy. Saves a lot of effort and it would be much more durable and consider that every model need some form of nose-weight anyway if you think the propeller is "too" heavy.

Gemini said it's good for 12"-18" model.

Further finds in AliExpress

Rubber Band Powered Airplane Winder Rubber Band Model Airplane Winder Cable Winder Competition Tool Belt Automatic Counting
SGD 16.92, shipping at SGD 13.53

10 Meters Power Rubber Band 1x2mm 1x3mm Elastic Band Parts for School DIY RC Airplane Model Training RC Fixed Wing Aircraft
10m 1x2mm at SGD 17.46, free shipping

All-in: SGD 3.08+2.70+16.92+13.53+17.46 = SGD 53.69
Just the prop and rubber: SGD 3.08+2.70+17.46 = SGD 23.24
Just the prop: SGD 3.08+2.70 = SGD 5.78

Start experimenting with making models that uses the propellers. Then see if office rubber bands work. Then change the rubber to see if it is better. Then buy a winder and see if it is better.

Gemini seems to agree:

Recommendations:

  • Start with just the propeller (or propeller & rubber bands if you're unsure about office bands).
  • Experiment with building models that use the propeller.
  • See if office rubber bands work for propulsion.
  • If office bands aren't effective, try the different sizes you bought to see if there's an improvement.
  • Only then consider buying the winder if manual winding becomes a hassle.

This way, you can gradually invest in your rubber band powered airplane project and see what works best before spending a lot on a winder.

Could also look for other things at AliExpress. Plywood, tubings, RC gear, glue, ptfe sheets to make bearings, air compressor?